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Abstract

The modelling of property prices has been extensively studied in economet-
rics, with widely used approaches including generalised linear regression and
geo- graphically weighted regression. These models commonly address local
spatial correlations observed in property price data. However, despite its poten-
tial to capture spatial effects, the Conditional Autoregressive (CAR) model
remains underutilised for this purpose. This study examines the robustness
and predictive power of the CAR model, comparing it with established spa-
tial models across three different datasets generation. An illustrative case study
on Lombok house price data is also included. Simulation results showed that
the CAR model demon- strates a distinct advantage, achieving lower bias and
variability compared to other spatial regression models, effectively capturing
neighbourhood-based spa- tial relationships, and exhibiting strong predictive
power across various scenarios. In the Lombok case study, the CAR model out-
performed other models, providing more precise estimates for property-related
factors such as land size and built- up area. The results confirm that CAR’s
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spatial framework enables a nuanced analysis of property values across regions,
enhancing accuracy in predictive mod- els. This study also reveals the distinct
strengths and limitations of each model, offering insights into their predictive
accuracy and applicability across diverse real estate contexts.

Keywords: Conditional auto-regressive, simultaneous auto-regressive, geograpichally
weighted regression, Property prices, Neighbourhood structure

1 Introduction

Real estate valuation represents a complex challenge, requiring a nuanced understand-
ing of spatial dynamics and interdependencies within property markets. Traditional
valuation methods often overlook these spatial dimensions, resulting in incomplete
predictions and less effective policy interventions (Pagourtzi et al. (2003), Droj,
Kwartnik-Pruc, and Droj (2024), McCord et al. (2014)). In response, spatial regression
models have emerged as powerful tools to address these shortcomings by explic-
itly incorporating spatial relationships into the analysis of property prices (Stewart
Fotheringham and Park (2018), Yang et al. (2019), Soltani et al. (2021)).
Among the various spatial regression models, Geographically Weighted Regression
(GWR) is particularly prominent in property price research. Known for its capacity
to capture local variations in property prices, GWR addresses spatial heterogeneity
by allowing coefficients to vary across different locations. Significant studies, such as
those by Sisman and Aydinoglu (2022), Soltani et al. (2021), Brunsdon, Fotheringham,
and Charlton (1996), Yu (2007), and Lu, Charlton, and Fotheringham (2011), have
highlighted its effectiveness in revealing spatially varying relationships between prop-
erty values and various explanatory factors, including structural and neighbourhood
characteristics, locational attributes, and socio-economic variables.
Spatial Autoregressive (SAR) models account for spatial dependence in the dependent
variable by including a spatial lag parameter (𝜌), which measures the influence of
neighboring values. This makes SAR well-suited for data where values are directly
impacted by nearby areas or points, such as house prices influenced by surrounding
properties. However, SAR relies on a global spatial structure, which can limit its ability
to capture localised patterns. Additionally, according to Golgher and Voss (2016) and
LeSage and Pace (2014) the interdependence created by the spatial lag term introduces
feedback effects, where values influence each other in a looping manner, making the
interpretation of coefficients more complex.
Conditional autoregressive (CAR) models, in contrast, are designed to handle more
localised spatial dependencies effectively, compare to SAR. They assume values at a
location are conditionally dependent on neighboring areas, defined through an adja-
cency matrix W. This approach models spatial dependence via a spatial random effect,
𝜙, which captures the influence of neighboring areas on the value at a specific loca-
tion (Banerjee, Carlin, and Gelfand (2014)). CAR models are particularly suited for
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areal data, such as aggregated district-level statistics, where spatial autocorrelation is
prominent. Unlike GWR, CAR does not require exact point coordinates and provides
better handling of spatial heterogeneity than SAR. Its ability to model finer localised
effects through 𝜙 makes CAR a preferred choice for applications like district-level
property price analysis, public health studies, or crime mapping (De Oliveira (2012)).
This study is motivated by the need to address the spatial intricacies that charac-
terise real estate markets. Properties located near each other often share similar price
trends, influenced by common amenities, and neighbourhood attributes. Incorporat-
ing spatial dependencies into property valuation allows spatial regression models to
provide a deeper insight into market dynamics than traditional methods. It explores
the theoretical basis, methodological structures, and practical uses of the GWR, SAR,
and CAR models within house price modelling. Through a comparative analysis of
these models, we aim to clarify their respective advantages, limitations, and appropri-
ateness for enhancing the accuracy and detail of property market assessments, with a
particular focus on the distinct context of Lombok, Indonesia.
The paper begins with a literature review on spatial regression techniques for modeling
property prices. Section 3 outlines the theoretical foundations of spatial autoregressive
models, including GLM, GWR, SAR, CAR, and their multilevel variants. Section 4
provides a comparative analysis of these models across three artificial study regions,
evaluating their predictive accuracy and robustness. Section 5 applies these models to
Lombok house price data, demonstrating their efficacy in capturing spatial patterns
and improving real estate market insights.

2 Related works

Recent studies have leveraged GWR to investigate the spatial heterogeneity of hous-
ing market determinants. For example, C.-H. Wang and Chen (2020) applied GWR
to examine the impact of local built-environment factors on home prices across
different phases of the housing market cycle. Their findings highlighted significant
spatial variations, underscoring the critical role of local context in influencing home
prices. Similarly, Lu, Charlton, and Fotheringham (2011) employed GWR with a non-
Euclidean distance metric to analyze London house price data. By incorporating this
alternative metric, they better captured the spatially varying relationships between
house prices and their determinants, emphasizing the importance of considering dif-
ferent distance metrics in spatial analyses. In their 2018 study, Stewart Fotheringham
and Park (2018) explored spatial and temporal variations in the determinants of apart-
ment prices in Seoul, South Korea, over a decade. Utilizing a hedonic price model
with a spatio-temporal lag, calibrated through GWR, they revealed consistent spa-
tial variations and strong spatial lag effects on house prices over time. Additionally,
Cellmer, Cichulska, and Bełej (2020) applied GWR to assess the spatial variations in
determinants of the housing market in Poland. The study identified spatial patterns of
autocorrelation in average housing prices and market activity, illustrating the value of
GWR in examining localized effects of socio-demographic and environmental factors
on the housing market. Collectively, these studies demonstrate the efficacy of GWR
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and its extensions in capturing the nuanced spatial and temporal variations in housing
market data, providing valuable insights for urban planning and policy-making.

In parallel, numerous studies have demonstrated the versatility and applicability of
SAR models across various fields. For instance, Fix, Cooley, and Thibaud (2021)
explored the use of SAR models for analyzing spatial extremes, highlighting their abil-
ity to capture spatial dependence structures in extreme values. Sarlas and Axhausen
(2015) showcased the effectiveness of SAR models in transportation research by pre-
dicting localized speed variations, illustrating their utility in improving traffic flow
predictions. Beguería and Pueyo (2009) emphasized the advantages of SAR models in
addressing spatial autocorrelation by comparing them with generalized least squares
models, providing more accurate predictions in ecological and biogeographical studies.

In the realm of real estate, SAR models have been particularly valuable. Trojanek and
Gluszak (2018) used SAR models to analyze the spatial and temporal effects of sub-
way availability on property prices in Warsaw. Their study revealed significant price
premiums for properties located near subway stations, underscoring the importance
of transportation infrastructure on real estate values. Bottero et al. (2017) applied
SAR models to investigate the relationship between buildings’ energy performance
and real estate market value. Their findings illustrated the model’s utility in linking
environmental attributes to economic outcomes in the property market. Furthermore,
Cellmer, Kobylińska, and Bełej (2019) demonstrated the practical relevance of SAR
models in urban planning and property valuation by employing hierarchical SAR
models to develop detailed land value maps in urban areas, underscoring the model’s
effectiveness in capturing the complexities of urban land valuation.

Despite their limited use in property price modelling, CAR models offer a promis-
ing approach for addressing spatial autocorrelation and generating reliable estimates,
making them well-suited for future studies in house price analysis. Lee (2013) intro-
duced the R package CARBayes, which supports Bayesian spatial modelling using
conditional autoregressive priors. By including house price data as a case study, Lee
demonstrated the flexibility of CAR models in capturing localised spatial dependen-
cies relevant to real estate valuation. Wall (2004) provided a comparative analysis
of the spatial structures in CAR and SAR models, highlighting CAR’s strength in
handling localised spatial interactions through an adjacency-based framework. While
their work focused on educational and environmental applications, the insights are
directly applicable to real estate modelling. Similarly, Ver Hoef et al. (2018) examined
CAR models in ecological studies, emphasizing their robustness in managing spatial
heterogeneity and clarifying their structural differences from SAR models. By address-
ing the limitations of SAR’s global spatial framework and excelling in the detection
of localised patterns, CAR models emerge as a robust and adaptable methodology for
accurately modelling spatial dynamics in property prices, advancing the precision of
real estate valuation techniques.
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3 Study region

In the spatial modelling, the study region 𝒮 is typically divided into 𝐾 distinct non-
overlapping geographic units, denoted as 𝒮𝑘 for 𝑘 = 1, 2, … , 𝐾. Each geographic unit
𝒮𝑘 is associated with a target variable 𝑦𝑘 and a set of explanatory factors represented
as a vector x𝑘.

In this study, the artificial study region was constructed to facilitate model simulations
and analysis. This synthetic region serves as a spatial representation. The dataset
consists of a simple feature (sf) collection. It spans a bounding box from longitude
116.0355 to 116.5 and latitude -8.500079 to -8.000057, using the WGS 84 coordinate
reference system (CRS). The geometry type is polygon, indicating that each feature is
a polygonal area, with 216 polygons in total. Each polygon is defined by two attributes:
area, representing the size in square units, and geometry, specifying the polygon’s
boundaries with longitude and latitude coordinates. The artificial study region is
illustrated in Figure 1.

Figure 1: Artificial study region used for simulation analysis, consisting of 216 non-
overlapping polygonal areas. Each area represents a distinct spatial unit for modelling and
analysis, providing a controlled environment to evaluate spatial models’ performance

5



Another specific ingredient in spatial modelling is the existence of 𝑊 matrix, also
known as the spatial weights matrix. It encodes the spatial relationships between
areas in a study region. The weight matrix visually shows how different regions are
connected to each other, indicating their neighbourhood relationships (Morris et al.
(2019)). To demonstrate this concept, let’s take a simple example of a map with 5
regions (𝐴, 𝐵, 𝐶, 𝐷, 𝐸), as visualised in Figure 2.

Figure 2: Illustration of neighbourhood structure. The figure depicts a simplified spatial
configuration where each numbered area represents a distinct spatial unit, demonstrating
how neighbouring relationships can be defined for spatial modelling purposes.

From the Figure 2 we can derive an adjacency matrix which represents the neighbor-
hood structure of five spatial units labeled 𝐴 to 𝐸. Each entry 1 indicates a direct
adjacency (areas share a common border), while 0 denotes no direct connection. For
example, Area 𝐴 is adjacent to all other areas (𝐵, 𝐶, 𝐷, and 𝐸), whereas Area 𝐵 is
only adjacent to 𝐴 and 𝐶. This neighbourhood configuration captures a clear spatial
interaction pattern among the areas, which forms the basis for constructing a spatial
weight matrix, commonly denoted as the W matrix

W =

𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 0 1 1 1 1
𝐵 1 0 1 0 0
𝐶 1 1 0 1 0
𝐷 1 0 1 0 1
𝐸 1 0 0 1 0

D =

𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 4 0 0 0 0
𝐵 0 2 0 0 0
𝐶 0 0 3 0 0
𝐷 0 0 0 3 0
𝐸 0 0 0 0 2

Later on, in the modelling stage, we will also need to construct a diagonal matrix
𝐷. It is an 𝑁 × 𝑁 matrix where each diagonal element 𝑑𝑖𝑖 denotes the number of
neighbours of region. while all non-diagonal elements are zero. This matrix is essential
in spatial econometric models because it captures the local neighbourhood structure
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of each region. In the context of Geographically Weighted Regression (GWR), Spa-
tial Autoregressive (SAR), and Conditional Autoregressive (CAR) models, 𝐷 plays a
pivotal role in defining spatial relationships and dependencies among different regions.

For instance, in SAR and CAR models, the diagonal matrix 𝐷 aids in incorporat-
ing spatial lag and error components by appropriately weighting the influence of
neighbouring regions (Wall (2004), Ver Hoef et al. (2018)). In GWR, this matrix
assists in locally calibrating the model by reflecting the density and connectivity of
regions (Brunsdon, Fotheringham, and Charlton (1996), Stewart Fotheringham and
Park (2018)). In this case, D indicates that region 𝐴 has 4 neighbours, regions 𝐶 and
𝐷 each have 3 neighbours, and region 𝐵 and 𝐸 has 2 neighbours.

Figure 3: Neighbourhood structure of the artificial region. This figure illustrates the spatial
connectivity between polygons in the artificial study region, where each line represents a
defined neighbour relationship based on spatial adjacency

In relation to our artificial study region, Figure 3 illustrates the connections between
areas, represented by vertices or centroids for each area and nodes connecting them
to each other. This visualisation highlights the spatial adjacency structure within the
region.
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4 Spatial regression model

When discussing spatial regression, it’s crucial to comprehend the basic notion of
linear regression. In classical linear regression, the relationship between the dependent
variable 𝑦 and the 𝑥1, 𝑥2, … , 𝑥𝑝 independent variables is expressed as

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀 (1)

This formulation assumes a global relationship between the variables, where the coeffi-
cients 𝛽1, 𝛽2, … , 𝛽𝑝 are constant across the entire study area. In many spatial datasets,
relationships between variables may exhibit spatial variation. For example, in the case
of property pricing, a consistent rates of change assumption may not hold true uni-
versally. For example, the house price increase for an extra bedroom is often thought
to be fixed across all locations. However, local customs or knowledge may actually
dictate these rates, rather than a universal utility assigned to each commodity. For
instance, in neighbourhoods with families, where extra space is highly valued, the per-
ceived value of an additional bedroom may be greater compared to areas with singles
or elderly couples, for whom extra space may not be as desirable.

4.1 Geographically Weighted Regression (GWR)

Brunsdon, Fotheringham, and Charlton (1996) developed GWR which is one such
technique that extends classical linear regression by allowing coefficients to vary spa-
tially. It allows for the estimation of local relationships between a response variable
and predictor variables. It is particularly useful for exploring spatial non-stationarity
and identifying spatially varying relationships across different locations. The GWR
model can be expressed as:

𝑦𝑖(𝑠) = 𝛽0(𝑠) +
𝑝

∑
𝑘=1

𝛽𝑘(𝑠)𝑥𝑖𝑘(𝑠) + 𝜀(𝑠), 𝑖 = 1, … , 𝑛 (2)

Equation 2 represents a spatial regression model where y(𝑠) is the dependent variable
at location 𝑠. The term 𝛽0(𝑠) is the spatially varying intercept, while ∑𝑝

𝑘=1 𝛽𝑘(𝑠)xk(𝑠)
represents the spatially varying coefficients for the independent variables xk(𝑠). 𝜀(𝑠)
denotes the error term, capturing unexplained variation at location 𝑠
Using a weighted least squares approach to calibrate regression models allows different
weights to be assigned to different observations, influencing the estimated parameters.
In ordinary least squares, the goal is to minimize the sum of squared differences
between predicted and actual 𝑦 values. Weighted least squares, however, apply a
weighting factor 𝑤 to each squared difference, making some prediction inaccuracies
more significant. If 𝑤 is a diagonal matrix of weights, the estimated coefficients are
given by Equation 3:

𝛽(𝑠) = (𝑥𝑇 𝑊(𝑠)𝑥)−1𝑥𝑇 𝑊(𝑠)𝑦 (3)
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This method allows GWR to address spatial heterogeneity by emphasizing observa-
tions near the location of interest, thereby improving the accuracy and relevance of
local model estimates.

The estimation of GWR parameters involves fitting a separate regression equation
for each location in the study area. Various estimation techniques can be employed,
including ordinary least squares (OLS), weighted least squares (WLS), and maximum
likelihood estimation (MLE). These techniques aim to optimize the model parame-
ters to minimize the differences between the observed and predicted values of the
dependent variable.

4.2 Simultaneously Autoregressive (SAR) Models

While GWR focuses on capturing localised spatial heterogeneity by allowing coeffi-
cients to vary across space, SAR take a different approach by explicitly modelling
spatial dependencies through a spatial lag. The SAR model is a spatial econometric
model used to analyse spatial dependencies and relationships among observations in
a geographic space (Anselin and Griffith (1988)). It is widely employed in various
fields, such as regional economics, environmental studies, and urban planning. SAR is
a type of spatial autoregressive model involving a simultaneous equation framework
to capture spatial interactions.

The general form of SAR model can be expressed as follows

𝑦(𝑠) = 𝜌 ∑
𝑠′

𝑤(𝑠, 𝑠′)𝑦(𝑠′) +
𝑝

∑
𝑘=1

𝛽𝑘𝑥𝑘(𝑠) + 𝜀(𝑠) (4)

where Y is the vector of observed values for the dependent variable, 𝑊 is the spatial
weights matrix, 𝜌 is the spatial autoregressive coefficient, 𝑋 is the matrix of observed
values for exogenous variables, 𝛽 is the vector of coefficients, and 𝜀 ∼ 𝑁(0, 𝜎2) is the
vector of error terms. Estimation of the SAR model parameters is typically done using
statistical techniques such as maximum likelihood estimation (MLE) or generalised
method of moments (GMM). The joint distribution of Y can be written as

Y ∼ 𝒩 ((𝐼 − 𝜌𝑊)−1 𝑋𝛽, 𝜎2 (𝐼 − 𝜌𝑊)−1 (𝐼 − 𝜌𝑊 𝑇 )−1) (5)

Extensions of the SAR model include the Spatial Lag Model, the Spatial Error Model,
and the Spatial Durbin Model (Elhorst et al. (2014)), each incorporating distinct
assumptions regarding the spatial configuration of the errors (Elhorst, Lacombe, and
Piras (2012); Anselin (2013)). These extensions provide flexibility to account for dif-
ferent types of spatial dependencies and can be chosen based on the specific spatial
relationships and hypotheses under investigation.

The SAR model, with its various specifications, provides a flexible framework to
account for spatial dependencies and explore the spatial dynamics of observed phe-
nomena. Researchers often choose between these models based on the nature of the
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spatial relationships in their data and the specific hypotheses they aim to test. The
SAR model is a valuable tool for understanding spatial interdependence and making
informed policy and planning decisions in diverse spatial contexts

4.3 Conditional Autoregressive (CAR) Models

CAR models are a class of spatial statistical models used to analyze spatially
structured data. The general formulation of a CAR model can be expressed as:

𝑦(𝑠) =
𝑝

∑
𝑘=1

𝛽𝑘𝑥𝑘(𝑠) + 𝜀(𝑠) + 𝜙(𝑠) (6)

Here, 𝜀 ∼ 𝑁(0, 𝜎2
𝜀) while 𝜙 is a specific component in CAR model that has a role

as spatial effect. It is also common to mention 𝜙 as a CAR priors. It is a type of
Gaussian Markov random field (Rue and Held (2005)), capture spatial autocorrelation
by ensuring that values at nearby locations are more similar than those further apart
(Lee (2013)). This can be expressed in a general term

𝜙 ∼ 𝑁(0, 𝜎2
𝜙𝑄−1) (7)

where 𝑄 is a precision matrix that may be singular (intrinsic model). 𝑄 controls the
spatial autocorrelation structure of the random effects, and is based on a non-negative
symmetric 𝑛 × 𝑛 neighbourhood or weight matrix 𝑊 .

Together with the spatial weights matrix 𝑊 , the prior information are crucial com-
ponents of CAR models. The choice of 𝑊 determines the spatial structure of the
model, while the priors for the variance parameters and the spatial random effects
influence the model’s ability to capture spatial dependencies. Commonly used priors
for the variance parameters include inverse-gamma distributions, which provide flex-
ibility and can be tuned to reflect prior beliefs about the scale of variability in the
data. The prevailing approach typically involves a binary representation using geo-
graphical adjacency, where 𝑤𝑘𝑖 = 1 if areal units (𝑆𝑘, 𝑆𝑖) have a mutual boundary
(denoted 𝑘 ∼ 𝑖, and is zero otherwise). This specification forces (𝜙𝑘, 𝜙𝑖) relating to
geographically adjacent areas (that is 𝑤𝑘𝑖 = 1) to be correlated. On the other hand,
random effects associated with areas that are not adjacent are independent of each
other, provided we know the values of the other random effects.

A CAR prior was introduced by Leroux, Lei, and Breslow (2000) and Stern and Cressie
(1999) to model diverse levels of spatial autocorrelation. In this type of prior, a single
collection of random effects is utilised and its primary objective is to model spatial
data, with a specific focus on dealing with spatial relationships and auto-correlation
between data points. This model is especially proficient in the task of smoothing data
and detecting spatial patterns within data set. The random effect 𝜙𝑘 structured as
follow:
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𝜙𝑘|𝜙−𝑘, W, 𝜌, 𝜎2
𝜙 ∼ 𝑁 (𝜌 ∑𝐾

𝑖=1 𝑤𝑘𝑖𝜙𝑖
𝐴 ,

𝜎2
𝜙

𝐴 ) (8)

where 𝐴 = 𝜌 ∑𝐾
𝑖=1 𝑤𝑘𝑖 +1−𝜌. Note that when 𝜌 = 1, the prior forms an intrinsic CAR

prior (Besag, York, and Mollié 1991), indicating full spatial dependency. Conversely,
when 𝜌 = 0, 𝐴 = 1 it means that there will be no 𝑊 matrix role in the model,
and it will become a comman random effect. In other words, the model reduces to a
generalised linear model.

When handling 𝑖 observations within each area 𝑘, Equation 9 closely resembles
Equation 2 in the GWR model, with the exception of the 𝜙 component. It is usually
called multilevel CAR models

𝑦𝑖(𝑠) =
𝑝

∑
𝑘=1

𝛽𝑘𝑥𝑘𝑖(𝑠) + 𝜀𝑖(𝑠) + 𝜙(𝑠) (9)

The Bayesian approach to CAR models entails defining prior distributions for all
model parameters, such as the regression coefficients 𝛽, variance parameters 𝜎2

𝜀 and
𝜎2

𝜙, and spatial random effects 𝜙𝑘. Subsequently, Bayesian inference techniques like
Markov Chain Monte Carlo (MCMC) are employed to derive posterior distributions
of these parameters. This method facilitates the integration of prior knowledge and
offers a versatile framework for quantifying uncertainty.

In general, Table 1 below summarises the key elements utilised in the GWR, SAR,
and CAR models:

Table 1: Comparison of Model Elements Across GWR, SAR, and CAR

Elements 𝐺𝑊𝑅 𝑆𝐴𝑅 𝐶𝐴𝑅
Number of Observations (𝑁) ✓ ✓ ✓
Covariate Matrix (𝑋) ✓ ✓ ✓
Spatial Weights Matrix (𝑊 ) × ✓ ✓
Spatial Coordinates (coords) ✓ ✓ ✓
Covariate Coefficients (𝛽) ✓ ✓ ✓
Spatial Autocorrelation (𝜌) × ✓ ✓
Spatial Structure component (𝜙) × × ✓
Spatial structure variance (𝜎2

𝜙) × × ✓
Error Term variance (𝜎2𝜀) ✓ ✓ ✓
Estimation method MLE MLE/GMM MCMC

5 Comparative Analysis of GLM, SAR, and CAR

This section focuses on generating spatially autocorrelated property price data, explor-
ing two distinct data generation frameworks: one using a CAR specification and
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another without spatial autocorrelation (non-CAR). The analysis is conducted within
an artificially constructed study area using key property covariates: land size, build-
ing size, number of bedrooms, and number of bathrooms. The generated datasets are
then employed to examine spatial dependencies in property prices and are analysed
using a suite of models including GLM, SAR, and CAR.

5.1 The experiment design

The experiment begins by creating a dataset based on the defined study region. The
idea is to generate covariates that hypothetically can explain price of a property. It
basically consist of property structural characteristics such as land size, building size,
number of bedrooms, and number of bathrooms. To represent real-world data, each
polygon contains multiple observations.

To generate the covariates, the first step involves creating area-level data with a spe-
cific spatial pattern, referred to as the housing density for the study region. The
spatial pattern implies that certain areas or polygons will have a higher housing den-
sity than others. In this case, the central horizontal region of the study area is set to
has a higher housing density, mirroring the housing distribution found on the island
of Lombok. Although this density will not be directly utilized in the model simulation,
it serves as a critical foundation for determining the spatial distribution of observa-
tion points across each polygon. In areas with higher density, a greater number of
observation points are generated, which aligns with the notion that densely populated
regions typically have more residential developments, thereby increasing the number
of properties available for sale. Across the 216 polygons, a total of 4,314 observation
points were generated. The number of observations per polygon varies from 5 to 56
points, reflecting the density in each area. Figure 4 illustrate how each polygon has
multiple observations and they are distributed according to a specific pattern.
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Figure 4: Artificial study region with observation points. The points represent data locations
within each polygon, simulating real-world spatial observations for the purpose of model
analysis and validation.

Following this, covariates were generated using mvrnorm() for each observation point,
creating a dataset for further analysis. Table 2 provides a brief slice of the covariates’
structure.

Table 2: Slice of generated dataset as covariates for simulations

ID land_size building_size #bedrooms #bathrooms

1 270.48 108.55 4 2
1 295.99 100.13 4 2
2 319.52 126.31 3 1
2 325.01 120.84 4 3
2 294.15 144.05 4 3

3 222.18 81.40 3 2
4 414.23 150.15 2 2
4 278.75 101.41 2 1

By employing artificially generated covariates and an artificially constructed study
region, we developed three distinct property price datasets, each based on a different
spatial model: CAR, a combination of CAR and SAR, and GWR. The true parameter
values for this purpose are 𝛽 = [1 0.9 0.7 0.5 0.3], 𝜎2

𝜙 = 0.2, 𝜎2
𝜙 = 0.6 and 𝜌 = 0.6.

Whereas beta values for GWR dataset is generated using a beta function, which is
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a function of coordinate points. The matrix W was derived from the neighbourhood
structure of an artificial study region using the functions poly2nb() and nb2mat().
Data generation for 𝑆𝐴𝑅 + 𝐶𝐴𝑅 employs a slightly different strategy. In addition
to being generated per area simultaneously using the joint distribution of Y as in
Equation 5, information about the spatial effect 𝜙 is also added at the end of the
process. Therefore, we refer to it as 𝑆𝐴𝑅 + 𝐶𝐴𝑅 data.

Each data generation resulting two types of datasets: area-level and point-level. These
datasets were then modelled using six linear regression approaches, comprising both
classical and spatial regression models: GLM, SAR, and CAR for area-level data, and
GWR, GLMM, and multilevel CAR for point-level data. Simulations were conducted
𝑠𝑖𝑚 = 1000 times. From each simulation, coefficients, parameters, and fitted values
were extracted, allowing for the computation of bias and RMSE values for robustness
and prediction power analysis.

5.2 Robustness and power prediction analysis

The bias values are summarised in Table 6 and Table 7. It shows that the mod-
els exhibit varying levels of accuracy across the different parameters and datasets.
Figure 5 presents the bias estimates of regression coefficients for different modelling
approaches, separated by data type: (a) area-level data and (b) point-level data. Each
panel corresponds to a data-generating mechanism (CAR, GWR, or SAR+CAR), and
bias values are shown with 95% confidence intervals.

(a) Bias values by method and dataset type for area-
level data

(b) Bias values by method and dataset type for point-
level data

Figure 5: Bias estimates comparison of six different methods across datasets generated
under CAR, GWR, and SAR+CAR frameworks. Each method’s performance is visualised
for 𝛽1, 𝛽2, 𝛽3, and 𝛽4, highlighting variations in bias and the effectiveness of each model in
addressing spatial dependencies.
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For area-level data (Figure 5a), CAR model consistently produces the lowest bias
across all coefficients and data-generating scenarios. This confirms its ability to recover
true parameter values under spatial dependency, even when data is aggregated. The
SAR model displays higher variability and often substantial bias, especially in CAR-
generated datasets, suggesting model misspecification when the true structure is
localised (as in CAR). GLM, which ignores spatial effects, performs reasonably in
some settings but often underperforms compared to CAR.

In the point-level setting (Figure 5b), the mlvCAR model shows superior performance,
achieving minimal bias across all coefficients and data-generating mechanisms. This
reflects its strength in modeling spatial dependencies while accounting for multilevel
data structure (i.e., multiple observations within areas). GLMM performs moderately
well but tends to show slightly higher bias than mlvCAR. In contrast, GWR, despite
being designed for point-level spatial variation, yields higher bias, especially under
SAR+CAR structures. This suggests GWR’s limitation when spatial heterogeneity is
not smooth or when model assumptions are violated.

Table 3: RMSE values across different datasets

Area-level data Point-level data
Dataset 𝐺𝐿𝑀 𝑆𝐴𝑅 𝐶𝐴𝑅 𝐺𝐿𝑀𝑀 𝐺𝑊𝑅 𝑚𝑙𝑣𝐶𝐴𝑅
𝐶𝐴𝑅 4.09 3.85 1.81 14.04 21.13 9.94
𝑆𝐴𝑅 + 𝐶𝐴𝑅 11.88 11.68 3.88 47.67 48.87 38.97
𝐺𝑊𝑅 2.43 2.42 2.28 18.31 18.33 14.87

Moreover, Table 3 provide insights into model accuracy at different spatial levels. For
area-level data, the models GLM, SAR, and CAR are compared, with the CAR model
consistently achieving the lowest RMSE. This suggests that CAR is more effective
at capturing spatial dependencies at the area level. For point-level data, the mod-
els GLMM, GWR, and mlvCAR are evaluated, with mlvCAR showing the lowest
RMSE across all datasets. This indicates that mlvCAR is particularly well-suited for
handling detailed spatial variations at the point level. Overall, these results highlight
the strengths of CAR and mlvCAR in reducing error within their respective spatial
contexts, underscoring their potential utility in spatial modeling applications.

6 Applications in Lombok house prices dataset

In this section, we apply the simulated models to property price data on Lombok
Island, Indonesia. Lombok is located in the eastern part of Indonesia, specifically
between latitudes -8.9° and -8.1°, and longitudes 115.9° and 116.6°.
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Figure 6: Lombok neighbour structure at the sub-district (Kecamatan) level. This figure
illustrates the spatial neighbour structure of sub-districts on Lombok Island. The red lines
represent the connections between neighbouring sub-districts based on adjacency relation-
ships, overlaid on a base map.

Lombok comprises five districts (kota/kabupaten), 53 sub-districts (kecamatan), and
608 villages (desa/kelurahan), representing three successive levels of administrative
division. Mataram District, despite its small area compared to other districts in Lom-
bok, is the most urbanized and economically active area on the island, characterized
by dense residential clusters with relatively homogeneous housing specifications. In
adjacent districts such as West Lombok and Central Lombok, housing developments
have expanded, particularly to accommodate commuters working in Mataram. The
coastal areas of West Lombok, including Batu Layar and Sekotong, exhibit villa-style
housing commonly associated with tourism, resulting in generally higher property
prices. A similar pattern is found in North Lombok, where mountainous terrain limits
development, but tourism-driven demand has led to villa-style housing near popular
destinations. East Lombok, by contrast, remains more isolated due to its distance
from Mataram. Housing in this district tends to serve primarily the local population,
with limited signs of external investment or tourism-driven development. Addition-
ally, the southern part of Central Lombok (Pujut) has seen emerging residential and
real estate activity following the construction of the international MotoGP circuit.
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In this study, the sub-district level is used as the spatial unit of analysis, as illustrated
in Figure 6. The key variables of interest include property price, land size, built-up
area, number of bedrooms, and number of bathrooms.

6.1 Data Collection

Data were collected from multiple online sources. Property prices and their
associated characteristics were harvested using web-scraping techniques from
three leading Indonesian property trading platforms, https://www.lamudi.co.id/,
https://www.99.co/, and https://www.rumah123.com/. The accuracy of the web-
scraped data was ensured by cross-referencing it with official datasets, performing
checks for missing or inconsistent entries, and validating key variables through sam-
ple comparisons with manually collected data. From this process, the initial dataset
comprised 1,188 entries, with 9 variables, including village, prices, land-size, built-up
area, number of bedrooms, number of bathrooms, floors, property type/category, and
furnishing status.

Further, we conducted several preprocessing steps. First, we filtered the dataset by
removing irrelevant variables, including floors, furnishing status, and category. It was
then subsequently filtered to retain only properties with plausible characteristics: land
area between 90 and 800 square meters, built-up size between 70 and 600 square
meters, a maximum of 6 bedrooms, and a maximum 5 bathrooms. These thresholds
were applied to ensure the data reflect realistic and context-appropriate housing char-
acteristics in Lombok, based on common residential patterns and local housing norms.
This step was essential to enhance the validity of the analysis by excluding outliers
or potentially erroneous entries. Following this procedure, the dataset was refined to
comprise a total of 576 observations. A summary of the key variables is presented in
Table 4. Notably, the distribution of property prices is skewed and does not exhibit
a bell-shaped curve, which motivates the inclusion of a log-transformed price variable
in the analysis.

Table 4: Summary statistics of house prices dataset (𝑁 = 576, NA = 4%), including variables
such as prices and its logscale value, land area(sqm), building area(sqm), number of beds,
and number of baths

Variable Mean SD Median 𝑄1 𝑄3 Min Max

Prices (million IDR) 1979.20 2054.51 1400.00 800.00 2500.00 170.00 22500.00
logPrices 7.26 0.80 7.24 6.68 7.82 5.14 10.02
Land-size (sqm) 299.08 179.33 254.50 147.00 405.75 90.00 800.00
Built-up area (sqm) 184.46 109.14 150.00 100.00 210.00 70.00 600.00
No. of bedroom 3.23 1.19 3.00 2.00 4.00 1.00 6.00

No. of bathroom 2.54 1.05 2.00 2.00 3.00 1.00 5.00

Next, we merged the cleaned dataset with spatial administrative data by matching
sub-district and district names. This process resulted in a dataset containing 598
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entries. Compared to the previous dataset, which consisted of 576 observations, this
indicates that 22 sub-districts did not have any property data available—meaning
that property sales in those areas were not recorded on the online property listing
platform used as the data source.

To address missing values, we used the mice package (Van Buuren and Groothuis-
Oudshoorn (2011)), which performs multiple imputation by chained equations
(MICE). This approach iteratively fills in missing data by modeling each variable with
missing values as a function of other variables in the dataset. By generating multi-
ple imputed datasets, it accounts for the uncertainty inherent in missing data. In our
case, we specified 10 iterations and generated 10 imputed datasets. A fixed random
seed was used to ensure the results were reproducible. The imputed datasets were
then pooled to obtain final estimates for subsequent analyses. The imputed values
were then reintegrated into the main dataset, replacing the original missing entries.
This process resulted in a final dataset that was complete and ready for subsequent
analysis using the selected spatial models.

In addition to the point-level dataset, which contains individual property listings, the
imputed dataset was also aggregated to the sub-district level by calculating the mean
values of key variables. This aggregation produced an area-level dataset, allowing
the analysis to be conducted at both the individual and administrative levels. These
two levels of data granularity provide complementary perspectives for evaluating the
performance of spatial models in capturing local property market dynamics.

Moreover, as GWR requires spatial coordinates for each observation, we addressed
this by generating random points around the centroid of each sub-district using the
st_sample() function. The number of points generated matched the number of obser-
vations in each area, and each was positioned within a 0.5 km radius of the centroid to
maintain a realistic spatial distribution while preserving the local context. This strat-
egy allowed us to simulate plausible spatial locations for property transactions in the
absence of precise geolocation data. Importantly, we applied the same bandwidth in
the GWR model fitting to ensure consistency. By preserving the area-level grouping
structure, this approach supports a fair comparison with the previous method.

6.2 Model Implementation & Analysis

The cleaned and completed Lombok dataset was then fitted to the model. Equation
Equation 10 presents the proposed model specification, which serves as the fixed
formula applied consistently across all analyses

logprices ∼ landstd + buildingstd + bedsstd + bathsstd (10)

Standardization of the predictors ensures that the resulting coefficients are on a com-
parable scale, facilitating meaningful interpretation and comparison across different
modeling approaches. We conducted model fitting on the area-level data, with detailed
results provided in the Appendix (Table 8). However, this method does not provide
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Table 5: Point-level Model Comparison

GLMM GWR mlvCAR
Coefficients
Intercept 7.09 [6.93, 7.24]* 7.25 [7.25, 7.26]* 7.08 [6.99, 7.17]*
Land-size 0.26 [0.21, 0.32]* 0.31 [0.30, 0.32]* 0.26 [0.21, 0.32]*
Built-up area 0.16 [0.10, 0.22]* 0.19 [0.19, 0.20]* 0.16 [0.10, 0.21]*
No. of bedroom -0.03 [-0.09, 0.01] -0.15 [-0.17, -0.15]* -0.03 [-0.09, 0.02]
No. of bathroom 0.19 [0.13, 0.25]* 0.24 [0.23, 0.26]* 0.19 [0.13, 0.25]*

Spatial parameter
𝜌 - - 0.48 [0.07, 0.90]*

Variances
𝜎2𝜀 0.22 [0.19, 0.25]* 0.33 [0.29, 0.37]* 0.22 [0.20, 0.25]*
𝜎2

𝜙 0.20 [0.11, 0.34]* - 0.31 [0.14, 0.58]*
Model fit criterion
AIC 803.38 -645.104 786.95
DIC - - 850.39
WAIC 838.3 - 851.14
LMPL -421.31 - -427.21
Log-likelihood -400.69 -520.97 -385.47

optimal parameter estimates because data aggregation can reduce variability and
obscure spatial details essential for capturing local effects. To address this, we used
point-level data to apply three different models: GLMM, GWR, and multilevel CAR.

The results presented in Table 5 provide a comprehensive evaluation of each model’s
performance in capturing both the structural and spatial characteristics of the
property market in Lombok.

Here, Table 5 compares parameter estimates and fit criteria for three models: GLMM,
GWR, and multilevel CAR. Significant coefficients are marked with an asterisk (*).
Key determinants like land-size and built-up area have positive, significant effects
across models, while the number of bedrooms shows only minor, varying effects,
indicating model-specific differences in capturing this variable’s influence. Only the
multilevel CAR model includes the spatial parameter 𝜌, with a significant estimate of
0.48, showing the model’s ability to account for spatial dependence. Variance compo-
nents 𝜎2

𝜀 (residual) and 𝜎2
𝜙 are also detailed, with both terms are significant. Fit criteria

(AIC, WAIC, and Log-likelihood) suggest mlvCAR and GWR may better capture
local spatial variation, with mlvCAR balancing spatial structure and precision.

Figure 7a and Figure 7b respectively present spatial heatmaps illustrating the distri-
bution of estimated spatial random effects (𝜙) from the CAR model and the average
log-transformed house prices per sub-district accross Lombok island. It can be seen
that both plots in Figure 7 exhibit similar spatial patterns, with high and low val-
ues clustering in comparable regions. Note that they do not have to be identical, as
𝜙 represents the spatially structured residual component after accounting for covari-
ates, whereas the log-transformed prices reflect the observed aggregated market values.
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(a) 𝜙 values (b) Aggregate price data (log scale)

Figure 7: Heatmap of aggregated price data and phi values in each Lombok sub-district

Nonetheless, their resemblance suggests that some of the spatial variability in house
prices is being effectively captured by the spatial random effects.
Because the model uses log-transformed prices, 𝜙 has multiplicative interpretation on
the original price scale. For instance, if 𝜙 = 0.57 for a given sub-district, then after
accounting for covariates, properties in that area are estimated to be approximately
exp(0.57) ≈ 1.76 or 76% more expensive than average. Similarly, a sub-district with
𝜙 = −0.2, this suggests that properties in that area are approximately 18% less
expensive than average, since exp(−0.2) ≈ 0.82. Note that the 95% credible interval of
𝜙 can be interpreted similarly by exponentiating the lower and upper bounds, yielding
a multiplicative uncertainty range for the price deviation.

7 Results and Discussion

The findings from simulation consistently indicate that both the CAR and mlvCAR
model outperform the other models in capturing spatial dependencies. This is evi-
denced by lower RMSE values and reduced bias across various dataset scenarios,
highlighting the CAR model’s robustness. In datasets with strong spatial structures,
such as those generated under 𝐶𝐴𝑅 and 𝑆𝐴𝑅 + 𝐶𝐴𝑅 conditions, the CAR model
achieves substantially lower RMSE values compared to GLM and SAR, suggesting its
effectiveness in handling localised spatial variations.
In the context of house price modelling, it is common to encounter multiple sales obser-
vations within a single area, yet precise coordinates for each sale are often unavailable.
Obtaining precise geographic coordinates in real-world datasets is often challenging
due to limitations in data collection, privacy concerns, or the aggregation of data into
broader administrative units. This limitation renders point-level approaches, such as
GWR, less effective. With multiple observations available for each area, models like
mlvCAR offer a more practical and accurate solution, effectively capturing spatial
dependencies at an area level without requiring precise point-level locations.
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The results underscore the importance of using models that explicitly account for spa-
tial dependencies in fields like property valuation, where spatial heterogeneity plays a
significant role. The superior performance of the CAR model, particularly in datasets
with strong spatial structure, suggests that it may be a more reliable choice for appli-
cations where local spatial variations are critical. The findings align with previous
studies (Y. Wang and Kockelman (2013), Soroori, Moghaddam, and Salehi (2019),
Zeng and Huang (2014), Guelat and Kéry (2018)) indicating that CAR models are
better suited for managing spatial autocorrelation and heterogeneity, especially when
spatial dependencies are strong.

Spatial maps of the estimated random effects 𝜙 from the CAR model offer further
insight into the spatial structure of housing prices across Lombok Island. These effects
represent residual spatial patterns after accounting for structural covariates like land
size, building size, and number of rooms. Such interpretability supports the use of
CAR models not only for improved prediction but also for spatial diagnostics. The
visual comparison of 𝜙 values and aggregated log-transformed prices (as shown in
Figure 7) highlights spatial patterns that may warrant further investigation—such as
clusters of residual over- or under-prediction in West and East Lombok respectively.
These patterns underscore the added value of CAR-type models in revealing latent
geographic effects.

These findings also echo the limitations of GWR when precise coordinates are lack-
ing, affirming the relevance of area-level approaches. Moreover, while we use a binary
adjacency matrix for consistency, we recognise that the choice of spatial weight W
may influences model performance. Future studies should explore alternative specifi-
cations such as row-standardized or distance-decay matrices to assess their impact on
robustness and interpretability.

Additionally, while the spatial dependence parameter 𝜌 is estimated as part of
the model fitting, its variability across simulations suggests that further sensitivity
analyses—especially under different fixed 𝜌 values—could shed light on model stability
in different spatial contexts.

Additionally, the limitations of point-level models such as GWR in the absence of
precise location data highlight a practical challenge in spatial modeling. When only
area-level data is available, the use of models like mlvCAR becomes essential, as it
allows for spatial analysis without the need for detailed coordinates, thus expand-
ing the applicability of spatial models in real-world settings. These insights suggest
potential for further exploration of the CAR and mlvCAR models in various domains,
especially in urban planning, real estate, and other fields where spatial relationships
impact outcomes. Future research could examine the use of CAR and mlvCAR models
with different spatial resolutions or apply these models to other datasets with varying
levels of spatial dependency to further validate their effectiveness.

In summary, this study highlights the importance of explicitly modeling spatial
dependence in house price analysis. CAR and mlvCAR models emerge as practi-
cal and theoretically sound options, especially when high-resolution spatial data are
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unavailable. Future research may extend these models to finer spatial scales, incor-
porate additional spatial diagnostics, or apply them in other domains where spatial
heterogeneity significantly influences outcomes.
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Table 6: Mean ± SD values for bias across different area-level datasets and parameters.
This table presents the mean and standard deviation (SD) of bias values across area-
level datasets (CAR, SAR + CAR, GWR) and spatial models (GLM, SAR, CAR), with
𝑛𝑠𝑖𝑚 = 1000. This is also act as numerical representation of fig. 5 (top panel)

Mean ± SD
Dataset GLM SAR CAR
𝛽1
CAR 7.80𝑒 − 02 ± 0.1900 9.00𝑒 − 03 ± 0.1900 −8.70𝑒 − 02 ± 0.1800
SAR + CAR 3.30𝑒 − 01 ± 0.3800 2.77𝑒 − 01 ± 0.3700 2.10𝑒 − 01 ± 0.3500
GWR −6.00𝑒 − 02 ± 0.1100 −6.50𝑒 − 02 ± 0.1100 −6.50𝑒 − 02 ± 0.1100

𝛽2
CAR 2.19𝑒 − 01 ± 0.1500 2.37𝑒 − 01 ± 0.1400 2.46𝑒 − 01 ± 0.1400
SAR + CAR −2.47𝑒 − 01 ± 0.3900 −2.29𝑒 − 01 ± 0.3600 −2.12𝑒 − 01 ± 0.3700
GWR 3.05𝑒 − 01 ± 0.0900 3.02𝑒 − 01 ± 0.0900 3.04𝑒 − 01 ± 0.0900

𝛽3
CAR −1.24𝑒 − 01 ± 0.2000 0.00𝑒 + 00 ± 0.1900 −3.80𝑒 − 02 ± 0.1800
SAR + CAR −5.80𝑒 − 02 ± 0.3700 6.30𝑒 − 02 ± 0.3500 −5.00𝑒 − 03 ± 0.3500
GWR −6.20𝑒 − 02 ± 0.1100 −3.50𝑒 − 02 ± 0.1100 −5.90𝑒 − 02 ± 0.1100

𝛽4
CAR 1.83𝑒 − 01 ± 0.1600 1.27𝑒 − 01 ± 0.1500 1.64𝑒 − 01 ± 0.1500
SAR + CAR 1.22𝑒 − 01 ± 0.3000 7.60𝑒 − 02 ± 0.2900 1.10𝑒 − 01 ± 0.2800
GWR 1.82𝑒 − 01 ± 0.0900 1.73𝑒 − 01 ± 0.0900 1.83𝑒 − 01 ± 0.0900

Appendix

Bias values for Area-level Data

Model Comparison for area-level data

Example of beta-values in GWR model

Figure 8: Spatial variation of 𝛽 values generated using a custom beta function. The color
gradient represents the magnitude of 𝛽 values across the artificial study region, highlighting
localised patterns and heterogeneity. The visualisation demonstrates the spatially varying
coefficient structure modeled in the study
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Table 7: Mean ± SD values for bias across different point-level datasets and parameters.
This table presents the mean and standard deviation (SD) of bias values across point-
level datasets (CAR, SAR + CAR, GWR) and spatial models (GLM, SAR, CAR), with
𝑛𝑠𝑖𝑚 = 1000. This is also act as numerical representation of fig. 5 (bottom panel)

Mean ± SD
Dataset GLMM GWR mlvCAR
𝛽1
CAR 2.80𝑒 − 04 ± 0.0115 8.77𝑒 − 03 ± 0.0160 −2.00𝑒 − 05 ± 0.0114
SAR + CAR 4.06𝑒 − 03 ± 0.0525 9.00𝑒 − 03 ± 0.0538 9.80𝑒 − 04 ± 0.0524
GWR −5.00𝑒 − 04 ± 0.0109 −5.20𝑒 − 04 ± 0.0108 −5.40𝑒 − 04 ± 0.0108

𝛽2
CAR −3.10𝑒 − 04 ± 0.0125 −5.50𝑒 − 03 ± 0.0172 −1.70𝑒 − 04 ± 0.0124
SAR + CAR −2.81𝑒 − 03 ± 0.0588 −5.72𝑒 − 03 ± 0.0602 −1.02𝑒 − 03 ± 0.0585
GWR 9.54𝑒 − 03 ± 0.0113 9.55𝑒 − 03 ± 0.0113 9.56𝑒 − 03 ± 0.0113

𝛽3
CAR 3.80𝑒 − 04 ± 0.0096 −2.86𝑒 − 03 ± 0.0142 4.50𝑒 − 04 ± 0.0095
SAR + CAR 9.00𝑒 − 04 ± 0.0391 −8.00𝑒 − 04 ± 0.0405 1.67𝑒 − 03 ± 0.0389
GWR −4.90𝑒 − 04 ± 0.0092 −5.00𝑒 − 04 ± 0.0091 −5.20𝑒 − 04 ± 0.0091

𝛽4
CAR −4.30𝑒 − 04 ± 0.0089 1.18𝑒 − 03 ± 0.0122 −5.10𝑒 − 04 ± 0.0089
SAR + CAR 3.10𝑒 − 04 ± 0.0393 1.03𝑒 − 03 ± 0.0394 −8.00𝑒 − 05 ± 0.0391
GWR 1.09𝑒 − 03 ± 0.0089 1.05𝑒 − 03 ± 0.0088 1.07𝑒 − 03 ± 0.0087
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